TABLE OF CONTENTS

DEVELOPMENT OF AIRCRAFT ENGINES
By Robert Schlaifer

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>Summary</td>
<td>7</td>
</tr>
</tbody>
</table>

PART I

I. **GOVERNMENT CONDUCT AND TECHNICAL CONTROL OF RESEARCH AND DEVELOPMENT**
Development by Government Itself, 15; Government Control of the Details of Development Done by Private Firms, 17; Responsibility of Government for General Course of Development, 26; Government Research, 30; Personnel in Military Engineering Establishments, 35; Conclusions, 39

II. DEVELOPMENT AT PRIVATE RISK: AMERICAN AND BRITISH POLICY COMPARED
American and British Policy on Financing Engine Development, 41; Historical Causes of the Difference in Policy, 44; Risk and Profits Under the Two Systems, 45; The Cost of Engines to the Government Under the Two Systems, 47; British and American Engines at the Outbreak of the War, 49; variety of engine types and sizes, 50; the heaviness of American engines, 51; specific features of primarily military utility, 53; The Effects of the Two Systems of Financing on Technical Development, 54; The Essential Role of Profits Under the British System, 57; Conclusions, 59

III. DEVELOPMENT DIRECTLY SUPPORTED BY THE GOVERNMENT
The Insufficiency of Development Contracts as Incentives, 61; Desirability of an Assured Market,

[ix]
Table of Contents

CHAPTER 65
- The Administration of Development Contracts, 69; Development by New Companies — The Need for Adequate Resources, 76; Conclusions, 89

IV. THE PROBLEMS OF RADICAL INNOVATIONS
- The Sources of Innovations, 85; The Need of Government Support in the Early Stages of an Innovation, 87; Who Should Develop an Innovation? 92; Conclusions, 98

V. THE DEVELOPMENT OF ACCESSORIES
- The Need for Competition, 100; The Specialized Accessory Manufacturer and the Engine Builder, 105; The Armed Services and the Development of Accessories, 112; Power-Plant Accessories Which Are Not a Part of the Engine, 119; Conclusions, 121

PART II

VI. THE ORIGINS OF HIGH-POWER AIR-COOLED ENGINES IN BRITAIN
- Background: Developments up to the Middle of 1917, 193; The Dragonfly Episode (1917-1919), 199; The Initial Establishment of the Jaguar (1917-1921), 131; The Initial Establishment of the Bristol Jupiter (1917-1921), 134; The Period of Intense Competition (1922-1926), 139; The Jaguar Outclassed by the Jupiter (1926-1929), 143; Summary, 152
- Appendix: Magnitude of Bristol Engine Development Activities, 153

VII. THE ORIGINS OF THE AIR-COOLED ENGINE IN THE UNITED STATES
- The Situation at the End of the First World War: the status of the air-cooled engine abroad, 156; the state of the aircraft-engine industry in the United States, 157; the financing of aircraft-engine development in the first half of the 1920's, 160; The Development of a Medium-Power Air-Cooled Engine: The 200-hp Whirlwind: the early Lawrence engines, 169; the creation of the 200-hp [x]

VIII. THE ROLLS ROYCE LIQUID-COOLED ENGINES
- Rolls Royce After the First World War (1919-1925), 199; The Kestrel, 203; The Buzzard and the Schneider Trophy Engines, 210; The Merlin, to the Outbreak of the War (1939), 215; 100-Octane Fuel, 221; Development of Superchargers, 223; Development of Cooling Systems by Rolls Royce, 231: header tanks, 232; reduction of the weight of the cooling system, 233; reduction of radiator drag, 235; pressure cooling, 238; development of lighter and more reliable radiators, 239; Summary, 243
- Appendix: The Vulture, 243; The Griffon, 244

IX. THE SPECIAL ECONOMIC STATUS OF LIQUID-COOLED ENGINES IN THE UNITED STATES IN THE 1930's
- The Technical Merits of the Two Types of Engine Compared, 250; The Marketability of Air-Cooled and Liquid-CooledEngines, 256; The Decline of the Liquid-Cooled Engine (1928-1932), 259; The Military Need for Continuing Development of Liquid-Cooled Engines, 262

X. THE DEVELOPMENT OF LIQUID-COOLED ENGINES IN THE UNITED STATES IN THE 1930's
- From 1932 to 1939, 265; Navy support of Wright Aeronautical (1932-1935), 266; the Army's resources, 267; Continental, 268; Allison, 273; Lycoming, 281; Pratt & Whitney, 283; the new Wright projects, 286; Liquid-Cooled Engines after 1939: the situation in 1939, 288;